
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 25, 1229±1240 (1997)

A MULTIGRID SEMI-IMPLICIT FINITE DIFFERENCE METHOD

FOR THE TWO-DIMENSIONAL SHALLOW WATER EQUATIONS

R. M. SPITALERI* AND L. CORINALDESI

Istituto per le Applicazioni del Calcolo-CNR, Viale del Policlinico 137, I-00161 Roma, Italy

SUMMARY

A multigrid semi-implicit ®nite difference method is presented to solve the two-dimensional shallow water
equations which describe the behaviour of basin water under the in¯uence of the Coriolis force, atmospheric
pressure gradients and tides. The semi-implicit ®nite difference method discretizes implicitly both the gradient of
the water elevation in the momentum equations and the velocity divergence in the continuity equations and
explicitly the convective terms using an Eulerian±Lagrangian approach. At each time step we apply the multigrid
computation to solve the resulting linear, symmetric, pentadiagonal system of discrete equations. The multigrid
algorithm, de®ned on staggered grids, provides accelerated convergence histories. We numerically simulate the
water circulation in a closed rectangular basin, centrally crossed by a deeper channel. Moreover, simulation of
the circulation in San Pablo Bay shows the high ¯exibility and applicability of this method to concrete problems.
Visualizations of the computed variables, water depth and velocity, are shown by ®gures. Displays of
convergence histories show promising multigrid acceleration. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multigrid computation has been successfully applied in several research ®elds and has been widely

investigated for performance evaluation. We could brie¯y say that multigrid methods solve a system

of discrete equations on a given grid by de®ning interactions with a hierarchy of auxiliary grids and

applying appropriate information transfer operators. Besides providing multigrid acceleration, this

computational strategy appears to have several other capabilities, e.g. handling non-linear problems

and using adaptive grid re®nement.1

We have already coupled multigrid computation with numerical grid generation methods2 and now

we apply this powerful computational technique to the solution of the shallow water equations

discretized by a semi-implicit ®nite difference discretization method. We deal with the numerical

approach proposed and tested by Casulli.3 In this approach the continuous shallow water equations

are discretized in such a way that a linear, symmetric, pentadiagonal system for the shallow water

elevation is de®ned on a staggered grid and has to be solved. For this step of the whole solution

CCC 0271±2091/97/111229±12 $17.50 Received December 1995

# 1997 John Wiley & Sons, Ltd. Revised November 1996

* Correspondence to: R. M. Spitaleri, Istituto per le Applicazioni del Calcolo-CNR, Viale del Policlinico 137, I-00161 Roma,
Italy.



procedure, multigrid computation seems to be able to solve this system and provide accelerated

convergence histories.

This paper presents the speci®c multigrid algorithm for the solution of the semi-implicit

discretization of the two-dimensional shallow water equations which has been de®ned, implemented

and tested with promising results. In order to have a self-contained presentation, we specify the

governing equations and their semi-implicit discretization, along with the explicit discretization of

the convective terms by an Eulerian±Lagrangian approach.

Then we introduce generality in the multigrid computation and present the multigrid components

of the speci®c algorithm we tested. Since the variables are de®ned on staggered grid points, we

assume slightly more complex multigrid transfer operators.

We applied the multigrid algorithm to simulate water circulation in arti®cial and natural basins:

(a) two closed rectangular basins, centrally crossed by a deeper channel,3 which differ only in their

physical extent

(b) San Pablo Bay.

Therefore we describe experimental numerical results which show the capability of the de®ned

algorithm to solve large simulation problems with satisfactory effectiveness. The algorithm provides

convergence histories with increasing acceleration depending on the grid number and, when

compared with one-grid algorithms, con®rms multigrid computation as a promising numerical

strategy.

2. GOVERNING EQUATIONS

The two-dimensional shallow water equations are quasi-linear hyperbolic partial differential

equations and can be written in the form3,4
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where u�x; y; t� and v�x; y; t� are the depth-averaged velocity components in the x- and y-direction

respectively, z�x; y; t� is the water surface elevation and h�x; y� is the water depth, both measured from

the undisturbed water surface, g is the constant gravitational acceleration, g is the bottom friction

coef®cient and f � 2o sinj is the coef®cient of the Coriolis force included in the model. Figure 1

shows the total water depth de®ned as H�x; y; t� � h�x; y� � z�x; y; t�.
Computational limitations of explicit numerical methods for (1) are known, while a fully implicit

discretization often becomes very heavy since it leads to the simultaneous solution of a large number

of coupled non-linear equations.

We will solve (1) by using a spatially staggered mesh and discretizing the governing equations

with a semi-implicit technique.3 The convective terms will be discretized by using an accurate

Eulerian±Lagrangian approach which provides an unconditionally stable algorithm allowing larger

steps to be used.3 The computational process can be summarized in the following terms. At each time

step: we ®rst derive an n� m linear pentadiagonal system in just one unknown, the new water surface

elevation, which is symmetric and positive de®nite; thus we apply a multigrid method to solve this
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discrete system which can be solved uniquely; then the ¯uid velocity is obtained explicitly from the

discretized momentum equations.

3. SEMI-IMPLICIT NUMERICAL METHOD

In this section we will derive a semi-implicit discretization of (1). The convective terms will be

discretized explicitly; the friction coef®cient g and the Coriolis force will be evaluated explicitly in

the momentum equations; the total water depth H�x; y; t� will be taken explicitly in the continuity

equations. All other terms of the system will be discretized implicitly.

As shown in Figure 2, the ®nite difference mesh used to discretize (1) consists of rectangular cells

of length Dx and width Dy. These cells are numbered at their centre by indices i and j, with i counting

the columns in the x-direction and j counting the rows in the y-direction. Since the water depth h�x; y�
is assumed to be known everywhere, the water elevation z is the system variable which is de®ned at

each cell centre. The horizontal component u of the velocity is de®ned at the centre of each vertical

side, while the vertical component v is de®ned at the centre of each horizontal side. Thus we are

dealing with a staggered grid.

We obtain the following semi-implicit discretization of (1) at time tk � kDt:

uk�1
i�1=2; j � Fuk

i�1=2; j ÿ g
Dt

Dx
�zk�1

i�1; j ÿ zk�1
i; j � ÿ Dtgk

i�1=2; ju
k�1
i�1=2; j ÿ f DtFvk

i; j�1=2;

vk�1
i; j�1=2 � Fvk

i; j�1=2 ÿ g
Dt

Dy
�zk�1

i; j�1 ÿ zk�1
i; j � ÿ Dtgk

i; j�1=2v
k�1
i; j�1=2 � f DtFuk

i�1=2; j;

zk�1
i; j � zk

i; j ÿ
Dt

Dx
���zk

i�1=2; j � hi�1=2; j�uk�1
i�1=2; j ÿ ��zk

iÿ1=2; j � hiÿ1=2; j�uk�1
iÿ1=2; j�

ÿ Dt

Dy
���zk

i; j�1=2 � hi; j�1=2�vk�1
i; j�1=2 ÿ ��zk

i; jÿ1=2 � hi; jÿ1=2�vk�1
i; jÿ1=2�;

�2�

Figure 2. Staggered grid

Figure 1. Co-ordinate system for shallow water equations
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where uk
i�1=2; j and vk

i; j�1=2 are the depth-averaged velocity components and zk
i; j is the water surface

elevation. We immediately write (2) in the form
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where �zk
i�1=2; j and �zk

i; j�1=2 are averaged values, from the closest scalar grid points, computed by the

expressions
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and F is an explicit non-linear ®nite difference operator which de®nes the spatial discretization of the

convective terms ut � uux � vuy and vt � uvx � vvy. The speci®c form of F will be introduced in the

following section.

Given any F, system (3), which is linear in the unknowns uk�1
i�1=2; j, v

k�1
i; j�1=2 and zk�1

i; j , has to be solved

at each time step recursively from assigned initial data. Since this requires most of the computational

time, we reduce this system to a smaller one in which zk�1
i; j are the only unknowns.3

By inserting the expressions for uk�1
i�1=2; j and vk�1

i; j�1=2 obtained from the ®rst two equations into the

third equation of system (3), we have
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Let us assume in system (4) that
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By applying rotated lexicographic ordering to the unknowns zk�1
i; j , we obtain the following linear

pentadiagonal system of equations:

ÿAu�iÿ 1; j�zk�1
iÿ1; j ÿ Av�i; j ÿ 1�zk�1

i; jÿ1 � Az�i; j�zk�1
i; j ÿ Av�i; j�zk�1

i; j�1 ÿ Au�i; j�zk�1
i�1; j � b�i; j�: �5�

The assumptions ��zk � h�i�1=2; j > 0 and ��zk � h�i; j�1=2 > 0 lead system (5) to be symmetric and

strictly diagonally dominant, with positive elements on the main diagonal and negative ones

elsewhere.3 That is, the system is positive de®nite with a unique solution which can be very

ef®ciently solved by a multigrid algorithm.1

4. CONVECTIVE TERM DISCRETIZATION

Let us use an Eulerian±Lagrangian approach to discretize the convective terms and obtain an explicit

form for F which is relatively accurate and unconditionally stable.3

Let us rewrite the convective terms as Lagrangian derivatives

do
dt
� @o
@t
� u

@o
@x
� v

@o
@y
; �6�

where the substantive derivative d=dt indicates that the temporal rate of change is calculated along

streamlines de®ned by

dx

dt
� u;

dy

dt
� v: �7�

Let us denote by a and b the Courant numbers

a � u
Dt

Dx
; b � v

Dt

Dy
:
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We derive from (6) the correct physical expression for Fok
i; j in the form

Fok
i; j � ok

iÿa; jÿb:

Since in general a and b are not integers, �iÿ a; j ÿ b� is not a grid point. Thus, in dealing with

Eulerian±Lagrangian methods which use a generalization of the interpolation concept, i.e. they de®ne

interpolation over three or more mesh points either including or not including point �i; j�, we

approximate ok
iÿa; jÿb with the following bilinear interpolation over the four surrounding mesh

points:3

Fok
i; j � �1ÿ p���1ÿ q�ok

iÿn; jÿm � qok
iÿn; jÿmÿ1� � p��1ÿ q�ok

iÿnÿ1; jÿm � qok
iÿnÿ1; jÿmÿ1�; �8�

where a � n� p and b � m� q, with n and m integers and p; q 2 �0; 1�.
Having the correct values of a and b means solving the ordinary differential equations (7). Let us

assume that the values of u and v, known at time level tk , do not vary over a time step. At each mesh

point �i; j�, equations (7) are integrated numerically backward from tk�1 to tk by using the Euler

method. By dividing the time step into N equal parts of length t � Dt=N , we have the discrete system

xsÿ1 � xs ÿ tuk�xs; ys�; xN � xi;
ysÿ1 � ys ÿ tvk�xs; ys�; yN � yj; s � N ;N ÿ 1; . . . ; 2; 1;

where uk�xs; ys� and vk�xs; ys� are provided by an interpolation operator analogous to (8). Then, at

�xi; yj�, a and b are given by

a � xi ÿ x0

Dx
; b � yj ÿ y0

Dy
:

In this way the streamlines, which in general are not straight lines, are better approximated. We recall

that the ampli®cation factor of the operator F expressed by (8), with u and v constant, is3

f � �cos�na� ÿ I sin�na���cos�mb� ÿ I sin�mb���1ÿ p� p cos�a� ÿ Ip sin�a��
� �1ÿ q� q cos�b� ÿ Iq sin�b��;

and since 04 p < 1 and 04 q < 1, it results that j f j4 1 identically for every a and b and with no

restriction on the time step. Thus applying the Eulerian±Lagrangian approach to discretize the

convective terms leads to unconditionally stable resulting difference equations (3). Just a restriction

on the time subdivision t must be imposed to approximate streamlines not crossing the solid

boundaries.3

5. MULTIGRID COMPUTATION

At each time step tk�1 let us rewrite the linear system (5) in the form

Lk�1
M Zk�1

M � Fk�1
M on GM ; �9�

where GM is the staggered grid, with spatial mesh sizes Dx and Dy, which covers the physical domain.

To obtain a fast solution of system (9) via the multigrid method, we add to GM a sequence of coarser

uniform grids G0;G1; . . . ;GMÿ1 provided by the widely used coarsening method called mesh size

doubling: Dxl � 2Dxl�1 and Dyl � 2Dyl�1, where l � 0; 1; . . . ;M ÿ 1 is the level number.1,5,6

If the approximation zM of the solution Zk�1
M is available, the correction V k�1

M � Zk�1
M ÿ zM satis®es

the correction equation

Lk�1
M V k�1

M � ~Fk�1
M on GM ;

where ~Fk�1
M � Fk�1

M ÿ Lk�1
M zM is called the residual.
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We can see immediately that solving the correction equation or equation (9) is completely

equivalent. V k�1
M can be well approximated by using the coarser grid GMÿ1 if this correction is

`smooth', i.e. if its high-frequency components are small compared with its low-frequency

components. This can be achieved very ef®ciently by suitable relaxation methods. The same thing is

true also for the other grids, then, in the general step of the multigrid cycle.1

Let us determine the approximate solution �Va�k�1
l of the problem

Lk�1
l V k�1

l � ~Fk�1
l on Gl;

called problem Gl, for l � 0; . . . ;M ÿ 1, where ~Fk�1
l � I l

l�1� ~Fk�1
l�1 ÿ Lk�1

l�1 V k�1
l�1 � and I l

l�1 is an

appropriate ®ne-to-coarse transfer operator or restriction.

Finally let us determine a new approximation

~V k�1
l�1 � V k�1

l�1 � I l�1
l �Va�k�1

l ;

where I l�1
l is an appropriate coarse-to-®ne transfer operator or prolongation.

The linear multigrid algorithm (LMG) is recursively de®ned on the basis of a two-grid method.

One iteration of the �l � 1; l� two-grid method computing ẑk�1
l�1 from zk�1

l�1 is composed of the

following steps.5,6

1. Pre-smoothing. Compute �zk�1
l�1 by applying u1 �50� sweeps of a given relaxation method with

starting guess zk�1
l�1 :

�zk�1
l�1 � Relaxu1 �zk�1

l�1 ; Lk�1
l�1 ;Fk�1

l�1 �:
2. Coarse-grid correction

(a) computation of the residual ~Fk�1
l�1 � Fk�1

l�1 ÿ Lk�1
l�1 �zk�1

l�1

(b) restriction of the residual: ~Fk�1
l � I l

l�1
~Fk�1

l�1

(c) computation of the exact solution of Lk�1
l V k�1

l � ~Fk�1
l

(d) interpolation of the correction: V k�1
l�1 � I l�1

l V k�1
l

(e) computation of the correct approximation: ~zk�1
l�1 � zk�1

l�1 � V k�1
l�1 .

3. Post-smoothing. Compute ẑk�1
l�1 by applying u2 �50� sweeps of the given relaxation method with

starting guess ~zk�1
l�1 :

ẑk�1
l�1 � Relaxu2�~zk�1

l�1 ; Lk�1
l�1 ;Fk�1

l�1 �:
In this description, `Relax' stands for a relaxation procedure which has suitable error-smoothing

properties; u1 smoothing steps are performed before and u2 smoothing steps are performed after

the coarse-grid correction.

Figure 3 shows the computational scheme. Indeed, in the multigrid method the linear coarse-grid

equation is not solved exactly, but approximately by several multigrid steps using still coarser grids.

Thus the computation of the exact solution V k�1
l is replaced by an approximate solution.5

Figure 3. Linear �l � 1; l� two-grid method

MULTIGRID SEMI-IMPLICIT FINITE DIFFERENCE METHOD 1235

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1229±1240 (1997)



6. MULTIGRID ALGORITHM ON STAGGERED GRID

Let us note that using staggered grids makes the structure of the multigrid method slightly more

complicated. Since there is no correspondence among points on each grid pair, appropriate transfer

operators have to be used. For non-staggered grids a natural de®nition of the restriction is the `straight

injection', i.e. the value at each node on the coarser level comes directly from the corresponding node

of the ®ner level. For staggered grids we have to compute a new value at the ®ctitious node on the

®ner level, located in correspondence to each node on the coarser level, and then transfer this value to

the coarser-grid node (Figure 4). For prolongation of the correction a weighted linear interpolation

appears to be appropriate (Figure 5).

The multigrid algorithmic components and the related algorithms we use are as follows:

(a) coarser-grid construction (hierarchy of grids)!standard coarsening

(b) type of grids!staggered grids

(c) relaxation for error smoothing (Relaxu1 , Relaxu2 )!Gauss±Seidel relaxation, lexicographic

ordering

(d) restriction (®ne-to-coarse-grid transfer operator, I l
l�1)!local averaging (Figure 4)

(e) prolongation (coarse-to-®ne-grid transfer operator, I l�1
l )!weighted interpolation (Figure 5)

(f) multigrid cycling (grid changing)!V-, W-cycles.

We apply Gauss±Seidel relaxation since wide experience shows that successive displacement

(Gauss±Seidel, Gauss±Seidel±Newton, etc.) schemes are superior to simultaneous displacement

(Jacobi, Jacobi±Newton, etc.) ones.1,6 Furthermore, for successive displacement schemes the order in

which the equations are relaxed has an important effect on the smoothing factors. Orderings widely

used are lexicographic, red±black and more general pattern relaxation orderings which are similar to

red±black but with different and possibly more colours.5,6 In this multigrid application we tested the

Gauss±Seidel relaxation algorithm with lexicographic ordering.

The evaluation of the algorithmic performance has been obtained by the use of convergence

histories, which represent values of approximation errors depending on the number of computing

iterations.

Summary of a calculation step

Beginning from the initial data, the water circulation is advanced by a series of time steps, each of

length Dt. At each time tk�1 � �k � 1�Dt we have to

(a) compute the Lagrangian convective terms by expression (8)

(b) determine the water elevation ®eld zk�1
i; j by solving system (5) by the de®ned linear multigrid

algorithm

Figure 4. Fine-to-coarse-grid restriction
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(c) update the water velocity components uk�1
i�1=2; j and vk�1

i; j�1=2 by an explicit calculation with the

®rst two equations of system (3).

7. APPLICATIONS AND NUMERICAL RESULTS

We applied the multigrid algorithm to a set of simulation problems of water circulation in arti®cial

and natural basins and we obtained both satisfactory solutions and promising performance evaluation

results. Plates 1, 2 and 3, 4 show results of two problems of water circulation simulation. We display,

at each vizualization time step tvis, two-dimensional basins with the total water depth and the velocity

®eld represented by colour and a typical arrow plot respectively. In Plates 1±4 the light-to-dark-blue

scale corresponds to increasing water depth.

Performance evaluation has been carried out on the basis of logarithmic values of the residual

(log.err). By assuming the computational work in one sweep over the ®nest grid as one work unit

(WU), the error behaviour has been evaluated in terms of either WUs or multigrid cycles (iter).

Multigrid V- and W-cycles have been carried out. A few convergence histories are shown in Figures

6±8 which are related to the V(2, 1)-cycle with different numbers of grids (ngrid). They show

examples of error behaviour which persists through all the time steps.

Rectangular basins

Let us consider a closed rectangular basin of constant depth h� 1 m whose length in the x-direction

is 6000 m and whose width in the y-direction is 3300 m. The basin is crossed centrally along the x-

direction by a deeper channel which is closed at the right end and open at the left end. The channel

width is 300 m and its depth, measured from the undisturbed water surface, is h� 6 m. At the basin

boundaries the normal velocity is set equal to zero everywhere except at the left end of the channel,

where a tide of 12 h period and 0�4 m amplitude is speci®ed. We divided the ¯ow domain into 48624

®nite difference cells of equal sides Dx � Dy � 150 m. We assumed that the tidal circulation begins

with all water masses at rest.

From the numerical results provided by the multigrid semi-implicit ®nite different method, we can

note ®rst that this method allows the tide to be correctly simulated. Results are visualized in Plates 1

and 2, which show symmetric water surface elevation and velocity coherent with physical symmetry.

Figure 5. Coarse-to-®ne-grid prolongation
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Besides visualizations of the computed solution, we also visualized convergence histories of the

method, from which we can derive several observations. From Figure 6 it appears that the multigrid

algorithms are better than the one-grid algorithm. However, it also seems that adding the fourth grid

is of no advantage for this problem, since the ngrid� 4 curve substantially overlaps the ngrid� 3

curve. Therefore we considered the same test problem but physically larger, 50,100 m626,100 m,

and we used up to ®ve grids. From the convergence histories analysed for all the time steps, one of

which is shown in Figure 7, we derived the following results.

1. All the multigrid algorithms are faster than the one-grid solver.

2. The method speed-up increases on passing from one to ®ve grids, so adding both the fourth and

®fth grids becomes useful.

3. The convergence rate turns out optimal, and almost unchanged, on passing from two to ®ve

grids up to a precision of 0�561072, and beyond this value it progressively improves with the

increment of the level number.

4. The multigrid algorithm appears to be particularly convenient for physically large problems.

We also compared the multigrid method with the one-grid method using the preconditioned

conjugate gradient method (PCGM),5,6 which is a very ef®cient technique for solving the

pentadiagonal system (5). As we can see in Figure 8, the multigrid algorithm turns out to be the best

up to a precision of about 0�561074, where the two convergence histories meet each other, and very

fast up to 0�561072. These results, besides being very satisfactory, show that promising new

algorithmic combinations could be able to improve the obtained interesting performances.

Figure 6. Small rectangular basin: convergence history at tk � 1 h
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Figure 7. Large rectangular basin: convergence history at tk � 1 h

Figure 8. Large rectangular basin: convergence history at tk � 1 h

MULTIGRID SEMI-IMPLICIT FINITE DIFFERENCE METHOD 1239

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1229±1240 (1997)



San Pablo Bay

We have also applied the multigrid algorithm for the simulation of the real complex water

circulation in San Pablo Bay. We solve this problem on a grid of 46646 cells of equal sides

Dx � Dy � 500 m with time step Dt � 0�25 h. At the bay boundaries two tides of equal period, 12 h,

but with different amplitude are speci®ed at the cells covering the open bay sides, while the normal

velocity is set equal to zero elsewhere.

Plates 3 and 4 show the resulting velocity ®eld and water surface elevation obtained at tk � 6 and

12 h. These results also con®rm the effectiveness and ¯exibility of the present multigrid semi-implicit

®nite difference method.

8. CONCLUSIONS

A multigrid semi-implicit ®nite difference algorithm on staggered grids has been presented for the

two-dimensional shallow water equations. By applying this method, we obtained interesting

experimental results which allow the following observations to be derived.

1. The method provides signi®cant multigrid acceleration with respect to the same one-grid

algorithm.

2. It appears to be particularly convenient for physically large problems.

3. The multigrid acceleration turns out optimal, and almost unchanged, up to a rather interesting

precision, and beyond that it increases with the number of grids.

4. The multigrid algorithm seems to be signi®cantly faster than the fast preconditioned conjugate

gradient one-grid method.

These results, besides being very satisfactory, show that promising new algorithmic combinations

(e.g. suitable coupling of the multigrid calculation with the preconditioned conjugate gradient

method) could be able to improve the obtained interesting performances.
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